判别分析法
分析法是根据已知的违约和非违约的企业进行分类构成符于个总体,由这若干个总体的特征找出一个判别函数,用于判别任意已观察的向量应判属于哪一个总体,以及检验两个或多个母体,在所测量的指标变量上,是否有显著差异,如有则指出为哪些指标。
1968年奥特曼(Altman)率先将判别分析法应用于财务分析、公司破产及信用风险的分析,建立了如下著名的线性判别分析模:
Z=0.012X1+0.014X2+0.033X3+0.006X4+0.999X5,
其中,X1为流动资金/总资产,X2为留存收益/总资产,X3为息税的收益/总资产,X4为股权市值/总负债账面值,X5为销售收入/总资产。临界值为2.675,如果z小于临界值,借款人被划入违约组,信用级别较低;反之被划入正常组,信用级别较高。当分值在1.81和2.99之间时,Altman发现判断失误较大,该重复区域为灰色区域。
以Z模型为代表的线性判别分析模型虽然很适用于信用评级,但这种方法存在一定问题:(1)限制条件过于严格,如要求样本数据服从多元正态分布,协方差矩阵相同等;(2)模型主要考虑的是财务因素,没有考虑行业特征、企业规模、管理水平等非财务因素的影响;(2)模型以历史数据为基础,对未来发展的预测不够。
综合评判法
综合评判法就是对多种因素所影响的事物或现象做出总的评价,即对评判对象的全体,根据所给的条件,给每一个对象赋予一个实数,通过总分法或加权平均等其他计算方法得到综合评分,再据此进行优序评价。
从信用评级本身的属性来看,企业信用评级属于一种不确定性的模糊问题,因此,综合评价法的发展趋势足与模糊理论相结合来对企业进行信用评级,从而使评级结果更科学、更准确。
人工神经网络法
所谓的人工神经网络,就是基于模仿生物大脑的结构和功能而构成的一种信息处理系统或计算机,简称神经网络,简写为ANN(ArtificialNeuralNetwork)。人工神经网络的基本构架是模仿生物的神经细胞,分为输入层、隐藏层和输出层二层。每一层色括若干代表处理单元的点。输入层的节点负责接收外在信息(如图1)不同于人脑的输入,人工神经网络所接收的输入信息是各种变量的数量化信息,一个输人变量对应一个输入节点。隐藏层的节点负责处理输入层传来的信息,并转化为中间结果传递给输出层。而输出层的节点就以隐藏层传来的信息与门槛值比较后,得到系统的最后结果,并将结果输出。
与传统的统计方法相比,人工神经网络具有以下特点:(1)具有自我组织与学习的能力;(2)可以描述输入资料中变量间的非线性关系;(3)可以依据样本和环境的变化进行动态的调整由于企业各项财务指标与信用风险之间往往存在着非线性关系。因此人工神经网络比较适用于企业的信用评价。
模糊分析法
传统
企业信用评级
企业信用评级
的数学或统计方法都足建立在精确的观点假设基础之上,但是在自然科学、社会科学和工程技术等领域,存在着很多模糊或不确定性;人类的认知模式、思考方式、甚至推理逻辑也涉及许多非确定性。因此利用传统的方法无法解决这样的不确定性问题,而模糊数学是将数学的应用范围,从精确扩大到模糊现象的领域,提出了隶属函数理论,确定了某一事物在多人程度上属于所讲的概念,或者不属于所讲的慨念,这样描述模糊性问题比精确数学更为合理。
同样,企业信用评级也属于模糊性问题,其信用状态如何,用精确数学“是”或“非”的概念很难做出判断,因此,应用模糊分析法对信用状况做出综合评价比较科学。
但是,学术界对于模糊数学的正当性仍然存在怀疑,因为:首先,模糊逻辑缺乏学习能力,应用上受到一定的限制。其次,模糊系统的稳定性很难获得理论上的保证。第二,模糊逻辑不是建立在传统数学的基础上,很难对此逻辑系统的正确性加以验证。
企业信用评级法
企业信用评级法通过对国际上先进的企业信用评级理论、企业信用评级思想、企业信用评级模型以及企业信用评级方法的研究,经过多年的不断探索、研究、实践、创新和积累,最终总结出一套符合中国经济环境且适用于中国中小企业的信用评级体系,并建立了完备的企业信用评级数据库、业内领先的企业信用评级模型以及科学的企业信用评级方法通过对国际上先进的企业信用评级理论、企业信用评级思想、企业信用评级模型以及企业信用评级方法的研究,经过多年的不断探索、研究、实践、创新和积累,最终总结出一套符合中国经济环境且适用于中国中小企业的信用评级体系,并建立了完备的企业信用评级数据库、业内领先的企业信用评级模型以及科学的企业信用评级方法。企业信用网就是通过利用现代互联网信息技术手段,来充分把握各个行业发展脉搏,从而保证了企业信用评级结果的准确性、及时性,提高了中国企业信用评级行业的技术水平。